# Learning to Detect Adversarial Examples Based on Class Scores

Tobias Uelwer, Felix Michels, and Oliver De Candido

44th German Conference on Artificial Intelligence (KI)

October 1st, 2021



hhu. TIM





 $+ 0.01 \cdot$ 



adv. image



"lion"

"broccoli"

hhu. TIM



"lion"

"broccoli"

- · General problem in deep learning methods
- · Dangerous in safety-critical applications

# hhu. TIM

#### **Problem Formulation**

1. Trained classification network

$$f_{\text{NN}}(\boldsymbol{X}; \{\boldsymbol{\theta}\}) = \underset{i}{\operatorname{arg\,max}} \underbrace{\operatorname{softmax}(\boldsymbol{z}^{(\text{NN})}(\boldsymbol{X}))_i}_{\text{class scores: } F(\boldsymbol{X})}$$

# hhu. TIM

#### **Problem Formulation**

1. Trained classification network

$$f_{\text{NN}}(\boldsymbol{X}; \{\boldsymbol{\theta}\}) = \operatorname*{arg\,max}_{i} \underbrace{\operatorname{softmax}(\boldsymbol{z}^{(\text{NN})}(\boldsymbol{X}))_{i}}_{\text{class scores: } F(\boldsymbol{X})}$$

2. Adversarial perturbation

$$\tilde{\boldsymbol{X}} = \boldsymbol{X} + \boldsymbol{\Delta} \in [0, 1]^{N \times N}$$

# hhu. TIM

#### **Problem Formulation**

1. Trained classification network

$$f_{\text{NN}}(\boldsymbol{X}; \{\boldsymbol{\theta}\}) = \operatorname*{arg\,max}_{i} \underbrace{\operatorname{softmax}(\boldsymbol{z}^{(\text{NN})}(\boldsymbol{X}))_{i}}_{\text{class scores: } F(\boldsymbol{X})}$$

2. Adversarial perturbation

$$\tilde{\boldsymbol{X}} = \boldsymbol{X} + \boldsymbol{\Delta} \in [0, 1]^{N \times N}$$

3. How do we find  $\Delta$ ?

$$\min_{\boldsymbol{\Delta}} \| \underbrace{\tilde{\boldsymbol{X}} - \boldsymbol{X}}_{\boldsymbol{\Delta}} \|_{p} \quad \text{s.t.} \quad f_{\text{NN}}(\tilde{\boldsymbol{X}}; \{\boldsymbol{\theta}\}) \neq f_{\text{NN}}(\boldsymbol{X}; \{\boldsymbol{\theta}\})$$

with  $p = 0, 1, 2, \infty$ 

# hhu. TIM

#### Categorization

· Targeted vs untargeted attacks

 $f_{\mathrm{NN}}(\tilde{\boldsymbol{X}}; \{\boldsymbol{\theta}\}) = \hat{y}$ 

# hhu. TIM

#### Categorization

· Targeted vs untargeted attacks

 $f_{\rm NN}(\tilde{\boldsymbol{X}}; \{\boldsymbol{\theta}\}) = \hat{y}$ 

· One-shot vs iterative attacks

# hhu. TIM

#### Categorization

· Targeted vs untargeted attacks

$$f_{\rm NN}(\tilde{\boldsymbol{X}}; \{\boldsymbol{\theta}\}) = \hat{y}$$

- One-shot vs iterative attacks
- · White-box vs black-box attacks

# hhu. TIM

#### Categorization

· Targeted vs untargeted attacks

 $f_{\rm NN}(\tilde{\boldsymbol{X}}; \{\boldsymbol{\theta}\}) = \hat{y}$ 

- One-shot vs iterative attacks
- · White-box vs black-box attacks

#### In This Work:

- 1. Fast Gradient Sign Method (FGSM):
- 2. Basic Iterative Method (BIM):
- 3. Boundary:
- 4. Carlini-Wagner (CW):

(un-)targeted, one-shot, white-box (un-)targeted, iterative, white-box (un-)targeted, iterative, black-box (un-)targeted, iterative, white-box

# Fast Gradient Sign Method (FGSM) Attack [1]

Cost function used to train the NN (e.g., cross entropy loss)

 $J(\pmb{X}, y_{\rm true}, \pmb{\theta})$ 

<sup>[1]</sup> Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

### FGSM Attack [1]

# hhu. TIM

Cost function used to train the NN (e.g., cross entropy loss)

 $J(\pmb{X}, y_{\mathrm{true}}, \pmb{\theta})$ 

Calculate perturbation

$$\boldsymbol{\Delta} = \varepsilon \operatorname{sign}(\nabla_{\boldsymbol{X}} J(\boldsymbol{X}, y_{\mathsf{true}}, \boldsymbol{\theta}))$$

with gradient w.r.t. input image  $\boldsymbol{X}$  and hyperparameter  $\varepsilon > 0$ 

<sup>[1]</sup> Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

#### [1] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

#### FGSM Attack [1]

Cost function used to train the NN (e.g., cross entropy loss)

 $J(\pmb{X}, y_{\mathrm{true}}, \pmb{\theta})$ 

Calculate perturbation

$$\boldsymbol{\Delta} = \varepsilon \operatorname{sign}(\nabla_{\boldsymbol{X}} J(\boldsymbol{X}, y_{\mathrm{true}}, \boldsymbol{\theta}))$$

with gradient w.r.t. input image  $\boldsymbol{X}$  and hyperparameter  $\varepsilon > 0$ 

· Adversarial example

$$\tilde{\boldsymbol{X}} = \boldsymbol{X} + \underbrace{\varepsilon \operatorname{sign}(\nabla_{\boldsymbol{X}} J(\boldsymbol{X}, y_{\mathsf{true}}, \boldsymbol{\theta}))}_{\boldsymbol{\Delta}} \in [0, 1]^{N \times N}$$

# hhu. TIM

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

Basic Iterative Method (BIM) Attack [2] hhu. TIM

Iterative extension of FGSM

$$\begin{split} \tilde{\boldsymbol{X}}_0 &= \boldsymbol{X} \\ \tilde{\boldsymbol{X}}_{t+1} &= \mathcal{P}_{\varepsilon} \left( \tilde{\boldsymbol{X}}_t + \underbrace{\alpha \operatorname{sign}(\nabla_{\tilde{\boldsymbol{X}}_t} J(\tilde{\boldsymbol{X}}_t, y_{\mathsf{true}}, \boldsymbol{\theta}))}_{\boldsymbol{\Delta}_t} \right) \end{split}$$

for  $t = 0, \ldots, T$  and step-size  $\alpha > 0$  with  $\alpha T = \varepsilon$ 

<sup>[2]</sup> Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

### BIM Attack [2]

# hhu. TIM

· Iterative extension of FGSM

$$\begin{split} \tilde{\boldsymbol{X}}_0 &= \boldsymbol{X} \\ \tilde{\boldsymbol{X}}_{t+1} &= \mathcal{P}_{\varepsilon} \left( \tilde{\boldsymbol{X}}_t + \underbrace{\alpha \operatorname{sign}(\nabla_{\tilde{\boldsymbol{X}}_t} J(\tilde{\boldsymbol{X}}_t, y_{\mathsf{true}}, \boldsymbol{\theta}))}_{\boldsymbol{\Delta}_t} \right) \end{split}$$

for  $t=0,\ldots,T$  and step-size  $\alpha>0$  with  $\alpha T=\varepsilon$ 

•  $\mathcal{P}_{arepsilon}$  projects the current iterate back onto a arepsilon- $L_p$  ball around  $oldsymbol{X}$ 

<sup>[2]</sup> Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

### Boundary Attack [3]

# hhu. TIT

- · Black-box attack (no gradients necessary, only model evaluations)
- Iterative method starting with  $[\mathbf{\Delta}_0]_{i,j} \sim \mathcal{U}(0,1)$

 $ilde{m{X}}_0 = m{\Delta}_0$  (must be misclassified) $ilde{m{X}}_{t+1} = ilde{m{X}}_t + m{\Delta}_{t+1}$ 

for t = 0, ..., T - 1

<sup>[3]</sup> Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In: International Conference on Learning Representations (2018), https://openreview.net/forum?id=SyZI0GWCZ

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

# Boundary Attack [3]

# hhu. TIT

- · Black-box attack (no gradients necessary, only model evaluations)
- Iterative method starting with  $[\mathbf{\Delta}_0]_{i,j}\sim \mathcal{U}(0,1)$

 $ilde{m{X}}_0 = m{\Delta}_0$  (must be misclassified) $ilde{m{X}}_{t+1} = ilde{m{X}}_t + m{\Delta}_{t+1}$ 

for t = 0, ..., T - 1

- Perturbations calculated by random walk along the boundary with conditions 1.  $\tilde{X}_{t+1} \in [0,1]^{N \times N}$ 
  - 2.  $\frac{\| \boldsymbol{\Delta}_{t+1} \|_F}{d(\tilde{\boldsymbol{X}}_t, \boldsymbol{X})} = \gamma$  (The perturbation has a specific relative size.)

3.  $\frac{d(\tilde{\mathbf{X}}_{t},\mathbf{X})-d(\tilde{\mathbf{X}}_{t+1},\mathbf{X})}{d(\tilde{\mathbf{X}}_{t},\mathbf{X})} = \nu$  (The distance is decreased by a realtive amount.) with a distance metric d and hyperparameters  $\gamma, \nu > 0$ .

<sup>[3]</sup> Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In: International Conference on Learning Representations (2018), https://openreview.net/forum?id=SyZI0GWCZ

## Carlini-Wagner (CW) Attack [4]

# hhu. TIM

Solve constrained optimization problem

$$\begin{split} \min_{\boldsymbol{\Delta}} \|\boldsymbol{\Delta}\|_p + c \cdot \max \left\{ \max_{j \neq y_{\mathsf{true}}} [\boldsymbol{z}^{(\mathrm{NN})} (\boldsymbol{X} + \boldsymbol{\Delta})]_j - [\boldsymbol{z}^{(\mathrm{NN})} (\boldsymbol{X})]_{y_{\mathsf{true}}}, -\kappa \right\} \\ \text{s.t.} \quad \boldsymbol{X} + \boldsymbol{\Delta} \in [0, 1]^{N \times N} \end{split}$$

where  $c, \kappa > 0$ 

- Control confidence with  $\kappa$ 

<sup>[4]</sup> Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

## CW Attack [4]

# hhu. TIM

· Solve constrained optimization problem

$$\begin{split} \min_{\boldsymbol{\Delta}} \|\boldsymbol{\Delta}\|_p + c \cdot \max \left\{ \max_{j \neq y_{\mathsf{true}}} [\boldsymbol{z}^{(\mathrm{NN})} (\boldsymbol{X} + \boldsymbol{\Delta})]_j - [\boldsymbol{z}^{(\mathrm{NN})} (\boldsymbol{X})]_{y_{\mathsf{true}}}, -\kappa \right\} \\ \text{s.t.} \quad \boldsymbol{X} + \boldsymbol{\Delta} \in [0, 1]^{N \times N} \end{split}$$

where  $c, \kappa > 0$ 

- Control confidence with  $\kappa$
- Introduce auxiliary variable W where

$$\boldsymbol{\Delta} = \frac{1}{2}(\tanh(\boldsymbol{W}) + 1) - \boldsymbol{X}$$

<sup>[4]</sup> Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

# CW Attack [4]

# hhu. TIM

· Solve constrained optimization problem

$$\begin{split} \min_{\boldsymbol{\Delta}} \|\boldsymbol{\Delta}\|_p + c \cdot \max \left\{ \max_{j \neq y_{\mathsf{true}}} [\boldsymbol{z}^{(\mathsf{NN})} (\boldsymbol{X} + \boldsymbol{\Delta})]_j - [\boldsymbol{z}^{(\mathsf{NN})} (\boldsymbol{X})]_{y_{\mathsf{true}}}, -\kappa \right\} \\ \text{s.t.} \quad \boldsymbol{X} + \boldsymbol{\Delta} \in [0, 1]^{N \times N} \end{split}$$

where  $c, \kappa > 0$ 

- Control confidence with  $\kappa$
- Introduce auxiliary variable W where

$$\boldsymbol{\Delta} = \frac{1}{2}(\tanh(\boldsymbol{W}) + 1) - \boldsymbol{X}$$

- Solve unconstrained optimization problem w.r.t.  $\boldsymbol{W}$ 

<sup>[4]</sup> Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 leee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

# hhu. TIT

#### Categorization

Gradient masking: prevent gradient computation with respect to the inputs by training models to obfuscate gradients

# hhu. TIM

#### Categorization

- Gradient masking: prevent gradient computation with respect to the inputs by training models to obfuscate gradients
- Adversarial training: robustify models by including adversarial images in the training set

# hhu. TIT

#### Categorization

- Gradient masking: prevent gradient computation with respect to the inputs by training models to obfuscate gradients
- Adversarial training: robustify models by including adversarial images in the training set
- Adversarial example detection: train an additional classifier to decide whether an input image is adversarial or not

# hhu. TITI

#### Categorization

- Gradient masking: prevent gradient computation with respect to the inputs by training models to obfuscate gradients
- Adversarial training: robustify models by including adversarial images in the training set
- Adversarial example detection: train an additional classifier to decide whether an input image is adversarial or not

#### Benefits of Adversarial Attack Detection

- · Post-hoc approach: no influence on model training
- · Easy to implement

### **Detecting Adversarial Examples**

$$f_{\mathrm{NN}}(\boldsymbol{X}; \{\boldsymbol{\theta}\}) = \operatorname*{arg\,max}_{i} \underbrace{\operatorname{softmax}(\boldsymbol{z}^{(\mathrm{NN})}(\boldsymbol{X}))_{i}}_{\operatorname{class\,scores:}\, F(\boldsymbol{X})}$$

hhu. TIT

## **Detecting Adversarial Examples**

# hhu. TIM

$$f_{\mathrm{NN}}(\boldsymbol{X}; \{\boldsymbol{\theta}\}) = \arg\max_{i} \underbrace{\operatorname{softmax}(\boldsymbol{z}^{(\mathrm{NN})}(\boldsymbol{X}))_{i}}_{\operatorname{class \, scores:} \, F(\boldsymbol{X})}$$

#### **Our Detection Method**

- 1. Construct adversarial image set  $\mathcal{X}_{\mathsf{adv}} = \{\tilde{X}_1, \dots, \tilde{X}_M\}$  from training set  $\mathcal{X}_{\mathsf{train}} = \{X_1, \dots, X_M\}$
- 2. Train Support Vector Machine (SVM)  $T_{\rm SVM}$  on normalized class scores training set

$$\begin{split} \mathcal{X}_{\text{scores}} &= \{ (F(\boldsymbol{X}_1), +1), \dots, (F(\boldsymbol{X}_M), +1), \\ & (F(\tilde{\boldsymbol{X}}_1), -1), \dots, (F(\tilde{\boldsymbol{X}}_M), -1) \} \end{split}$$

3. At test time use  $T_{\rm SVM}$  to detect adversarial examples based on class scores

## Evaluation

# hhu. TIM

#### **Experimental Setup**

- CIFAR 10 dataset
- Three pre-trained classification models (VGG-Net, GoogLeNet, ResNet)
- Four untargeted adversarial attacks (FGSM, BIM, Boundary, CW)
- Combinations of two attacks (CW+BIM, CW+FGSM, Boundary+BIM, Boundary+FGSM)

<sup>[5]</sup> Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and Applications80(7), 10339–10360 (2021)

# Evaluation

# hhu. TIM

#### **Experimental Setup**

- CIFAR 10 dataset
- Three pre-trained classification models (VGG-Net, GoogLeNet, ResNet)
- · Four untargeted adversarial attacks (FGSM, BIM, Boundary, CW)
- Combinations of two attacks (CW+BIM, CW+FGSM, Boundary+BIM, Boundary+FGSM)

#### **Reference Algorithm**

• Kwon et al. [5] : Threshold the difference between the largest and second largest normalized class scores. Threshold is learned using a decision stump.

<sup>[5]</sup> Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and Applications80(7), 10339–10360 (2021)

#### **Attack Results**

# hhu. TIM

|            | Accuracy on adversarial examples |           |          | Average perturbation norm |           |          |  |
|------------|----------------------------------|-----------|----------|---------------------------|-----------|----------|--|
| Attack     | VGG19                            | GoogLeNet | ResNet18 | VGG19                     | GoogLeNet | ResNet18 |  |
| FGSM       | 39.97%                           | 39.85%    | 40.18%   | 17.6232                   | 0.2575    | 2.7183   |  |
| BIM        | 5.17%                            | 4.29%     | 4.49%    | 8.9903                    | 0.0484    | 0.2303   |  |
| Boundary   | 8.99%                            | 25.75%    | 1.39%    | 0.0515                    | 0.0209    | 0.0849   |  |
| CW         | 4.75%                            | 0.55%     | 0.30%    | 0.2461                    | 0.0140    | 0.0559   |  |
| Orig. Acc. | 93.95%                           | 92.85%    | 93.07%   | -                         | -         | -        |  |

#### **Attack Results**

# hhu. TIM

|            | Accuracy on adversarial examples |           |          | Average perturbation norm |           |          |
|------------|----------------------------------|-----------|----------|---------------------------|-----------|----------|
| Attack     | VGG19                            | GoogLeNet | ResNet18 | VGG19                     | GoogLeNet | ResNet18 |
| FGSM       | 39.97%                           | 39.85%    | 40.18%   | 17.6232                   | 0.2575    | 2.7183   |
| BIM        | 5.17%                            | 4.29%     | 4.49%    | 8.9903                    | 0.0484    | 0.2303   |
| Boundary   | 8.99%                            | 25.75%    | 1.39%    | 0.0515                    | 0.0209    | 0.0849   |
| CW         | 4.75%                            | 0.55%     | 0.30%    | 0.2461                    | 0.0140    | 0.0559   |
| Orig. Acc. | 93.95%                           | 92.85%    | 93.07%   | _                         | _         | -        |



|           |          | Accuracy        |               | $F_1$ score     |               |
|-----------|----------|-----------------|---------------|-----------------|---------------|
| Model     | Attack   | Kwon et al. [5] | Ours          | Kwon et al. [5] | Ours          |
| VGG19     | FGSM     | 71.60%          | 82.08%        | 68.43%          | 82.05%        |
|           | BIM      | 85.20%          | 98.70%        | 84.47%          | 98.69%        |
|           | Boundary | <b>97.53%</b>   | 96.30%        | <b>97.44%</b>   | 96.25%        |
|           | CW       | 89.90%          | 90.05%        | 89.99%          | 90.16%        |
| GoogLeNet | FGSM     | 72.60%          | 76.05%        | 73.69%          | 74.48%        |
|           | BIM      | 81.50%          | 83.60%        | 77.88%          | 82.38%        |
|           | Boundary | <b>96.50%</b>   | 95.50%        | <b>96.35%</b>   | 95.45%        |
|           | CW       | 93.65%          | 93.80%        | 93.58%          | 93.76%        |
| ResNet18  | FGSM     | 70.40%          | <b>72.58%</b> | 69.23%          | <b>71.37%</b> |
|           | BIM      | 85.48%          | <b>89.48%</b> | 83.68%          | <b>88.96%</b> |
|           | Boundary | <b>97.20%</b>   | 96.28%        | <b>97.10%</b>   | 96.19%        |
|           | CW       | 93.53%          | <b>93.58%</b> | 93.63%          | <b>93.65%</b> |

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

hhu. TIT

<sup>[5]</sup> Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and Applications80(7), 10339–10360 (2021)

### Detection Results (Multiple Attacks)

|            |               | Accuracy        |        | $F_1$ Score     |        |
|------------|---------------|-----------------|--------|-----------------|--------|
| Model      | Attack        | Kwon et al. [5] | Ours   | Kwon et al. [5] | Ours   |
|            | CW+BIM        | 67.38%          | 89.90% | 54.80%          | 90.08% |
|            | CW+FGSM       | 80.75%          | 83.65% | 79.90%          | 83.14% |
| VGG19      | Boundary+BIM  | 73.45%          | 95.88% | 63.73%          | 95.85% |
|            | Boundary+FGSM | 82.45%          | 85.80% | 81.92%          | 84.85% |
|            | CW+BIM        | 70.93%          | 84.08% | 59.66%          | 83.92% |
| Googl oNot | CW+FGSM       | 79.68%          | 82.35% | 79.28%          | 81.37% |
| GoogLeinei | Boundary+BIM  | 73.60%          | 84.93% | 63.89%          | 84.57% |
|            | Boundary+FGSM | 78.93%          | 80.93% | 78.53%          | 79.58% |
| ResNet18   | CW+BIM        | 70.45%          | 88.30% | 60.49%          | 88.40% |
|            | CW+FGSM       | 78.68%          | 79.33% | 79.03%          | 79.52% |
|            | Boundary+BIM  | 72.73%          | 90.05% | 62.16%          | 89.61% |
|            | Boundary+FGSM | 77.93%          | 78.85% | 78.31%          | 77.76% |

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores

hhu. IIII

<sup>[5]</sup> Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and Applications 80(7), 10339–10360 (2021)

### Conclusion

# hhu. TIM

#### Conclusion

- · Detecting adversarial attacks only by looking at the class score distribution
- Empirical evaluation of various state-of-the-art adversarial attacks on different classification models
- · Improved class score based adversarial attack detection
- The proposed detection method can detect mixtures of attacks



### Thank you for your attention!

Any questions?