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• General problem in deep learning methods
• Dangerous in safety-critical applications
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Adversarial Attacks

Problem Formulation
1. Trained classification network

fNN(X; {θ}) = argmax
i

softmax(z(NN)(X))i︸ ︷︷ ︸
class scores: F (X)

2. Adversarial perturbation

X̃ =X +∆ ∈ [0, 1]N×N

3. How do we find ∆?

min
∆
‖ X̃ −X︸ ︷︷ ︸

∆

‖p s.t. fNN(X̃; {θ}) 6= fNN(X; {θ})

with p = 0, 1, 2,∞
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Adversarial Attacks

Categorization
• Targeted vs untargeted attacks

fNN(X̃; {θ}) = ŷ

• One-shot vs iterative attacks
• White-box vs black-box attacks

In This Work:
1. Fast Gradient Sign Method (FGSM): (un-)targeted, one-shot, white-box
2. Basic Iterative Method (BIM): (un-)targeted, iterative, white-box
3. Boundary: (un-)targeted, iterative, black-box
4. Carlini-Wagner (CW): (un-)targeted, iterative, white-box
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Fast Gradient Sign Method (FGSM) Attack [1]

• Cost function used to train the NN (e.g., cross entropy loss)

J(X, ytrue,θ)

• Calculate perturbation

∆ = ε sign(∇XJ(X, ytrue,θ))

with gradient w.r.t. input image X and hyperparameter ε > 0

• Adversarial example

X̃ =X + ε sign(∇XJ(X, ytrue,θ))︸ ︷︷ ︸
∆

∈ [0, 1]N×N

[1] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
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Basic Iterative Method (BIM) Attack [2]

• Iterative extension of FGSM

X̃0 =X

X̃t+1 = Pε

X̃t + α sign(∇X̃t
J(X̃t, ytrue,θ)︸ ︷︷ ︸
∆t

)


for t = 0, . . . , T and step-size α > 0 with αT = ε

• Pε projects the current iterate back onto a ε-Lp ball around X

[2] Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)
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Boundary Attack [3]

• Black-box attack (no gradients necessary, only model evaluations)
• Iterative method starting with [∆0]i,j ∼ U(0, 1)

X̃0 = ∆0 (must be misclassified)

X̃t+1 = X̃t +∆t+1

for t = 0, . . . , T − 1

• Perturbations calculated by random walk along the boundary with conditions
1. X̃t+1 ∈ [0, 1]N×N

2. ‖∆t+1‖F
d(X̃t,X)

= γ (The perturbation has a specific relative size.)

3. d(X̃t,X)−d(X̃t+1,X)

d(X̃t,X)
= ν (The distance is decreased by a realtive amount.)

with a distance metric d and hyperparameters γ, ν > 0.

[3] Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In: International
Conference on Learning Representations (2018), https://openreview.net/forum?id=SyZI0GWCZ
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Carlini-Wagner (CW) Attack [4]

• Solve constrained optimization problem

min
∆
‖∆‖p + c ·max

{
max
j 6=ytrue

[z(NN)(X +∆)]j − [z(NN)(X)]ytrue ,−κ
}

s.t. X +∆ ∈ [0, 1]N×N

where c, κ > 0

• Control confidence with κ

• Introduce auxiliary variable W where

∆ =
1

2
(tanh(W ) + 1)−X

• Solve unconstrained optimization problem w.r.t. W

[4] Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)
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Adversarial Defences

Categorization
• Gradient masking: prevent gradient computation with respect to the inputs by

training models to obfuscate gradients

• Adversarial training: robustify models by including adversarial images in the
training set

• Adversarial example detection: train an additional classifier to decide
whether an input image is adversarial or not

Benefits of Adversarial Attack Detection

• Post-hoc approach: no influence on model training
• Easy to implement
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Detecting Adversarial Examples

fNN(X; {θ}) = argmax
i

softmax(z(NN)(X))i︸ ︷︷ ︸
class scores: F (X)

Our Detection Method
1. Construct adversarial image set Xadv = {X̃1, . . . , X̃M} from training set
Xtrain = {X1, . . . ,XM}

2. Train Support Vector Machine (SVM) TSVM on normalized class scores
training set

Xscores = {(F (X1),+1), . . . , (F (XM ),+1),

(F (X̃1),−1), . . . , (F (X̃M ),−1)}

3. At test time use TSVM to detect adversarial examples based on class scores
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Evaluation

Experimental Setup

• CIFAR 10 dataset
• Three pre-trained classification models (VGG-Net, GoogLeNet, ResNet)
• Four untargeted adversarial attacks (FGSM, BIM, Boundary, CW)
• Combinations of two attacks (CW+BIM, CW+FGSM, Boundary+BIM,

Boundary+FGSM)

Reference Algorithm

• Kwon et al. [5] : Threshold the difference between the largest and second
largest normalized class scores. Threshold is learned using a decision
stump.

[5] Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and
Applications80(7), 10339–10360 (2021)
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Attack Results

Accuracy on adversarial examples Average perturbation norm

Attack VGG19 GoogLeNet ResNet18 VGG19 GoogLeNet ResNet18

FGSM 39.97% 39.85% 40.18% 17.6232 0.2575 2.7183
BIM 5.17% 4.29% 4.49% 8.9903 0.0484 0.2303
Boundary 8.99% 25.75% 1.39% 0.0515 0.0209 0.0849
CW 4.75% 0.55% 0.30% 0.2461 0.0140 0.0559

Orig. Acc. 93.95% 92.85% 93.07% – – –

FGSM

CW

Original
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Detection Results (Single Attacks)

Accuracy F1 score

Model Attack Kwon et al. [5] Ours Kwon et al. [5] Ours

VGG19

FGSM 71.60% 82.08% 68.43% 82.05%
BIM 85.20% 98.70% 84.47% 98.69%
Boundary 97.53% 96.30% 97.44% 96.25%
CW 89.90% 90.05% 89.99% 90.16%

GoogLeNet

FGSM 72.60% 76.05% 73.69% 74.48%
BIM 81.50% 83.60% 77.88% 82.38%
Boundary 96.50% 95.50% 96.35% 95.45%
CW 93.65% 93.80% 93.58% 93.76%

ResNet18

FGSM 70.40% 72.58% 69.23% 71.37%
BIM 85.48% 89.48% 83.68% 88.96%
Boundary 97.20% 96.28% 97.10% 96.19%
CW 93.53% 93.58% 93.63% 93.65%

[5] Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and
Applications80(7), 10339–10360 (2021)

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores 13



Detection Results (Multiple Attacks)

Accuracy F1 Score

Model Attack Kwon et al. [5] Ours Kwon et al. [5] Ours

VGG19

CW+BIM 67.38% 89.90% 54.80% 90.08%
CW+FGSM 80.75% 83.65% 79.90% 83.14%
Boundary+BIM 73.45% 95.88% 63.73% 95.85%
Boundary+FGSM 82.45% 85.80% 81.92% 84.85%

GoogLeNet

CW+BIM 70.93% 84.08% 59.66% 83.92%
CW+FGSM 79.68% 82.35% 79.28% 81.37%
Boundary+BIM 73.60% 84.93% 63.89% 84.57%
Boundary+FGSM 78.93% 80.93% 78.53% 79.58%

ResNet18

CW+BIM 70.45% 88.30% 60.49% 88.40%
CW+FGSM 78.68% 79.33% 79.03% 79.52%
Boundary+BIM 72.73% 90.05% 62.16% 89.61%
Boundary+FGSM 77.93% 78.85% 78.31% 77.76%

[5] Kwon, H., Kim, Y., Yoon, H., Choi, D.: Classification score approach for detecting adversarial example in deep neural network. Multimedia Tools and
Applications 80(7), 10339–10360 (2021)
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Conclusion

Conclusion

• Detecting adversarial attacks only by looking at the class score distribution
• Empirical evaluation of various state-of-the-art adversarial attacks on

different classification models
• Improved class score based adversarial attack detection
• The proposed detection method can detect mixtures of attacks

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores 15



Thank you for your attention!

Any questions?

Tobias Uelwer, Felix Michels, and Oliver De Candido — Learning to Detect Adversarial Examples Based on Class Scores 16


