Heinrich Heine University Düsseldorf

Problem Definition

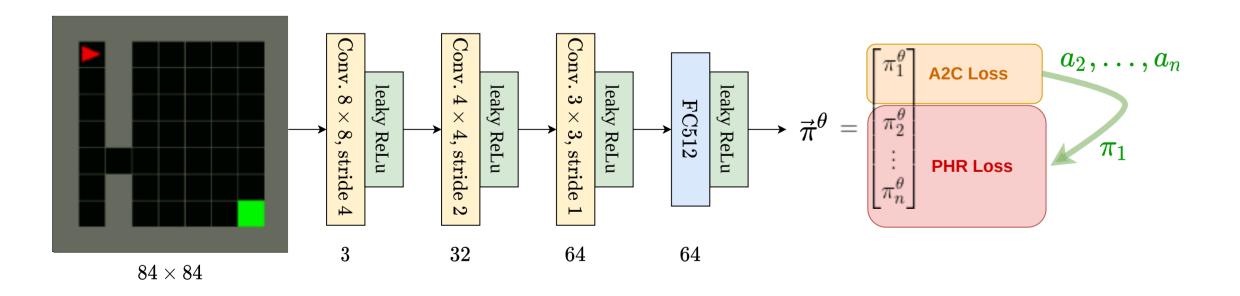
- New approach to increase inference performance in environments that require a specific sequence of actions in order to be solved.
- Policy horizon regression (PHR) learns a policy that can predict n actions in advance given an observation instead of one only action per observation.

Contributions

- Predicting the n dimensional action vector is much more efficient than evaluating the model n times. Thus, the agent completes the environments faster than its non-PHR counterpart.
- Useful in settings where agent has limited resources during inference time or where the agents productivity should be boosted.

Proposed Method

- Learn policy $\vec{\pi}^{\theta}$ that predicts n actions in advance i.e. the **policy vector** $\vec{\pi}^{\theta} = [\pi_1^{\theta}, \dots, \pi_n^{\theta}]^T.$
- Policy vector contains teacher policy and student policies $\pi_2^{\theta}, \ldots, \pi_n^{\theta}$ that learn the optimal policy i.e actions from teacher policy π_1^{θ} .

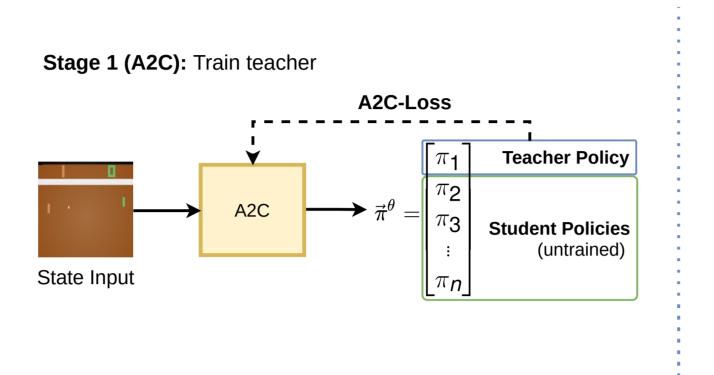


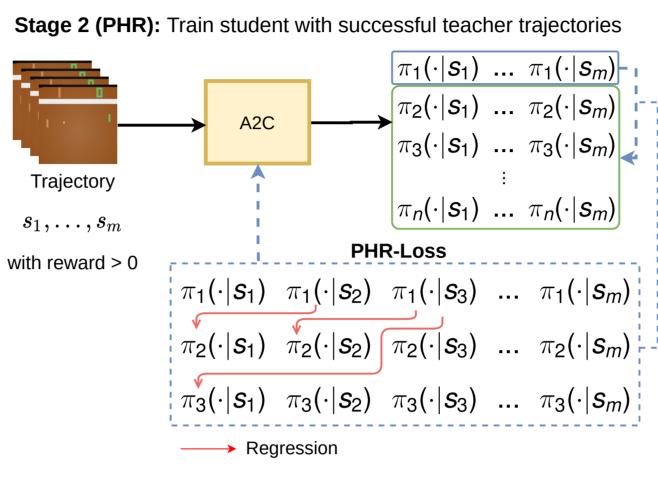
- (i) Environment is learned fully with A2C via regular policy gradient ascent $J_{PG}(\theta) = \mathbb{E}_{\pi_1} \left[\log \pi_1^{\theta}(s, a) \ Q^{\theta}(s, a) \right]$. π_1^{θ} will serve as teacher policy to learn the rest of the policy vector.
- (ii) Sample trajectories $D = \{(s_1, \pi_1(\cdot, s_1), \ldots, s_m, \pi_1(\cdot, s_m)), \ldots\}$ with positive reward from $\pi_1^{ heta}$, which will be regressed onto $\pi_2^{ heta}, \ldots, \pi_n^{ heta}$, where s_m is terminal with reward $r_{m-1} > 0$.

Learning to Plan via a Multi-Step Policy Regression Method

Stefan Wagner, Michael Janschek, Tobias Uelwer, Stefan Harmeling

Heinrich Heine University Düsseldorf, Germany

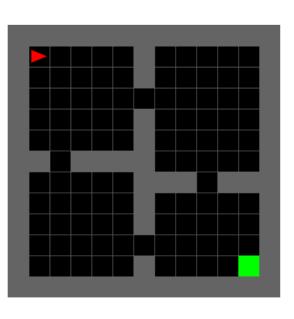


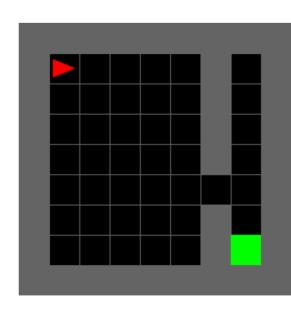


- Take out sub-sequences $B_n = \{(s_t, \pi_1(\cdot, s_t), \dots, s_{t+n-1}, \pi_1(\cdot, s_{t+n-1})), \dots\}$ of length n from D with $1 \le t \le m - n + 1$.
- Minimize squared distance between teacher policies $\pi_1^{\theta'}(\cdot|s_i)$ and set of student policies $\pi_i^{\theta}(\cdot|s_t)$: $J_{\mathsf{PHR}}(\theta, \theta') = \mathbb{E}_{\mathcal{D}}\left[\sum_{i=2}^n \left(\pi_i^{\theta}(\cdot|s_t) - \pi_1^{\theta'}(\cdot|s_i)\right)^2\right]$.
- Policy vector $\vec{\pi}^{\theta}$ learns to perform the same set of actions a_2, \ldots, a_n as π_1^{θ} just by looking at s_t .

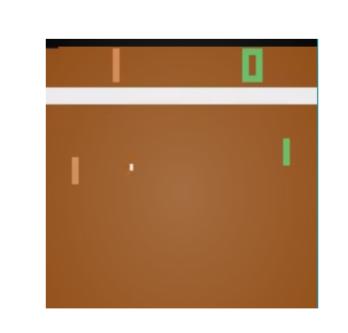
Experiments

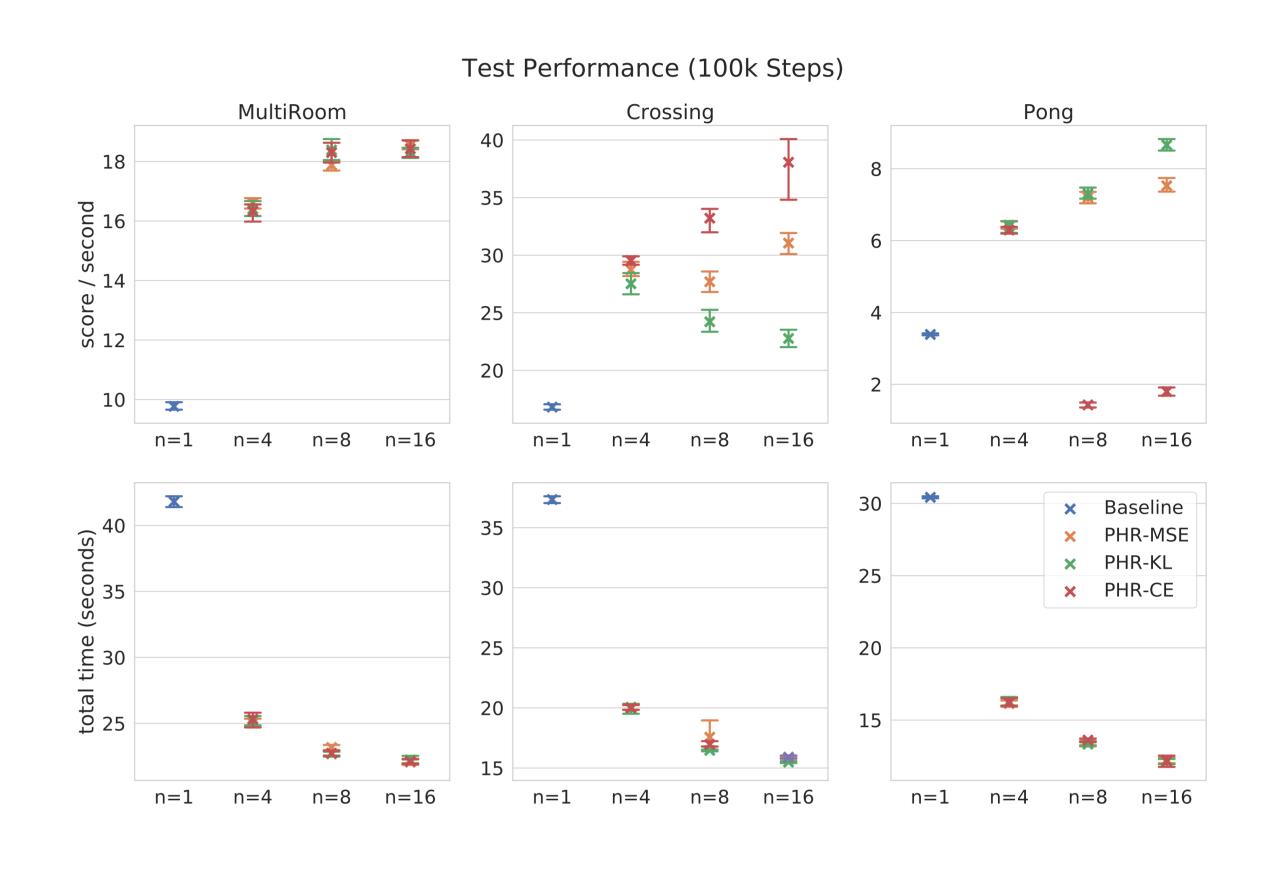
- Gym-minigrid [2]: Static(left) and stochastic(middle) gridworlds. Goal is to reach green square. Only here the agent receives a reward signal.
- Pong-Deterministic-v4 [1]: Test how PHR handles a more reactive agent.





- Agents evaluate environment every n steps i.e. perform n actions before evaluating the model again.
- Policy regression using MSE, KL-Divergence or Cross Entropy loss between actions.





- steps.
- throughput by the same factor.

stefan.wagner@hhu.de, michael.janschek@hhu.de, tobias.uelwer@hhu.de, stefan.harmeling@hhu.de

Results

PHR provides at least double the inference speedup in all 3 environments, only needing at least half the time to complete 100k

• As policy quality is maintained, the agent is able to increase its

Conclusions

PHR is able to substantially speedup model inference and mantain policy quality thus increasing its throughput by the same factor. Opens PHR up to easy implementation in real-world applications with limited computing resources or productivity constraints.

References

[1] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Environment: An Evaluation Platform for General Agents.

arXiv e-prints, page arXiv:1207.4708, July 2012.

^[2] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.