Non-Iterative Phase Retrieval With Cascaded Neural Networks

Problem Definition

Phase retrieval aims at recovering an image x from its Fourier magnitudes

• Most information about the image is contained in the phase φ .

Proposed Method

- We propose to use a neural network cascade $G^{(1)}, \ldots, G^{(q)}$ for Fourier phase retrieval.
- The magnitude image is fed to each of the networks.
- The sub-networks are updated stage-wise, i.e., we use \mathcal{L}_1 to update $G^{(1)}$, then the output of $G^{(1)}$ is passed as additional input to $G^{(2)}$ and so on.
- The first few networks focus on reconstructing a sub-sampled instance of the image, whereas the last sub-network predict the image at full-resolution.
- Alternatively, sub-sampling can be omitted. We denote this approach as CPR-FS.

Tobias Uelwer, Tobias Hoffmann, Stefan Harmeling

Heinrich Heine University Düsseldorf, Germany

Neural Network Cascade

• $G^{(1)}, \ldots, G^{(q)}$ are multi-layer perceptrons with three hidden layers. • $\mathcal{L}^{(1)}, \ldots, \mathcal{L}^{(q)}$ are mean-absolute-error or mean-squared error.

Results on MNIST and Fashion-MNIST

	MNIST							
HIO [1]		9	1	E,	9	Ø)		
AAR [2]		9		0	9	0		
sNet [3]	2	9	0	6	9	0		
MLP [4]		9	0	6	9	0		
GAN [4]		9	0	6	9	0		
PR (ours)	$\boldsymbol{\varsigma}$	9	0	6	9	0		
=S (ours)	5	9	0	6	9	0		
Original	5	9	0	6	9	0		

HIO RAAR ResNet MLF PRCGAN CPR (ou CPR-FS (ou

Quantitative Results

	MNIST			emnist					
	MSE	MAE	SSIM	MSE	MAE	SSIM			
HIO [1]	0.0441	0.1016	0.5708	0.0653	0.1379	0.5241			
RAAR [2]	0.0489	0.1150	0.5232	0.0686	0.1456	0.4973			
ResNet [3]	0.0269	0.0794	0.6937	0.0418	0.1170	0.5741			
MLP [4]	0.0183	0.0411	0.8345	0.0229	0.0657	0.7849			
PRCGAN [4]	0.0168	0.0399	0.8449	0.0239	0.0601	0.8082			
CPR (ours)	0.0123	0.0370	0.8756	0.0153	0.0525	0.8590			
CPR-FS (ours)	0.0126	0.0373	0.8729	0.0144	0.0501	0.8700			
	Fashion-MNIST			KMNIST					
	MSE	MAE	SSIM	MSE	MAE	SSIM			
HIO [1]	0.0646	0.1604	0.4404	0.0835	0.1533	0.3414			
RAAR [2]	0.0669	0.1673	0.4314	0.0856	0.1559	0.3208			
ResNet [3]	0.0233	0.0820	0.6634	0.0715	0.1711	0.3783			
MLP [4]	0.0128	0.0526	0.7940	0.0496	0.1168	0.5991			
PRCGAN [4]	0.0151	0.0572	0.7749	0.0651	0.1166	0.5711			
CPR (ours)	0.0115	0.0503	0.8077	0.0447	0.1068	0.6488			
CPR-FS (ours)	0.0113	0.0497	0.8092	0.0433	0.1034	0.6626			
Conclusion									

- artefacts.
- [1] James R Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758--2769, 1982.
- machine learning. Optical Review, 27(1):136--141, 2020.
- 25th International Conference on Pattern Recognition (ICPR), pages 731--738. IEEE, 2021.

tobias.uelwer@hhu.de, tobias.hoffmann@hhu.de, stefan.harmeling@hhu.de

CONCLUSION

Our proposed method does not fail to reconstruct unusual images as often as the compared methods. See first MNIST example. Both CPR and CPR-FS produce reconstructions with fewer

References

[2] D Russell Luke. Relaxed averaged alternating reflections for diffraction imaging. *Inverse problems*, 21(1):37, 2004.

[3] Yohei Nishizaki, Ryoichi Horisaki, Katsuhisa Kitaguchi, Mamoru Saito, and Jun Tanida. Analysis of non-iterative phase retrieval based on

[4] Tobias Uelwer, Alexander Oberstraß, and Stefan Harmeling. Phase retrieval using conditional generative adversarial networks. In 2020